skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simpson, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-voltage laser-triggered switches (HV-LTSs) are used in pulsed-power applications where low jitter and precise timing are required. The switches allow operation in the megaampere, megavolt regime while maintaining low insertion losses. Currently, there is a lack of detailed plasma measurements in these switches, yet such measurements are needed to elucidate the detailed physics, which include a range of processes such as laser breakdown, streamer formation and growth, current flow, plasma evolution, and cooling. Detailed spatially- and temporally resolved measurements of plasma properties within the switches could contribute to validating and advancing numeric models of these systems. This contribution presents laser Thomson scattering measurements of the electron number density and temperature evolution in a HV-LTS. The switch was operated at 6 kV with current flow for a duration of 145 ns and a peak current density of 0.2 MA/cm2 into a matched load. The Thomson scattering diagnostic system uses a 532 nm probe from an Nd:YAG laser allowing a temporal resolution of ∼10 ns. We find that during the switch current pulse, the plasma electron temperature rose from a starting value of 8.1 ± 1.6 eV (due to cooling of the earlier trigger laser plasma) to a peak value of 26 ± 5 eV with an associated increase in the electron density from 8.6 ± 1.7 × 1017 to 3.1 ± 0.6 × 1018 cm−3. 
    more » « less
  2. Abstract Carbon-negative synthesis of biochemical products has the potential to mitigate global CO2emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways intoEscherichia coligenerates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL−1), as well as hexanoic acid (3.06 ± 0.03 gL−1) and 1-hexanol (1.0 ± 0.1 gL−1) at the best performance reported to date in this bacterium. We also generateClostridium autoethanogenumstrains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL−1in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology. 
    more » « less